

Как я пытался ускорить анализ 12 000 комментариев с помощью GPU за 50 тысяч, но победил процессор

Open source*, Настройка Linux*, Python*, Контент и копирайтинг*

История о том, как я хотел провести анализ комментариев, а в итоге получил неожиданный, но полезный опыт с локальным AI.

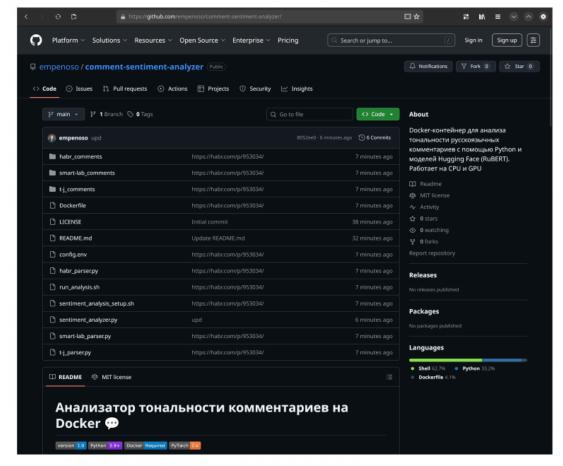
	A	В	С	D	E	F	G
1	Ресурс	Кол-во	Начало	Конец	Тираж (печатн.)	Просмотры (веб)	Комментарии (веб)
2	https://habr.com	113	2019-11	2025-09	0,0	2 192 876,0	4 497,0
3	https://pikabu.ru	61	2024-09	2025-09	0,0	506 243,0	726,0
4	https://smart-lab.ru	50	2024-09	2025-09	0,0	453 955,0	1 998,0
5	https://www.youtube.com	22	2013-02	2025-09	0,0	182 381,0	22,0
6	https://alenka.capital	1	2025-09	2025-09	0,0		0,0
7	https://fkviking.timepad.ru	1	2025-09	2025-09	0,0		0,0
8	https://rationalanswer.club	7	2024-11	2025-08	0,0	45 078,0	39,0
9	https://vc.ru	11	2019-11	2025-08	0,0	11 447,0	9,0
10	https://t.me	12	2019-03	2024-12	0,0	79 200,0	122,0
11	https://www.1tv.ru	1	2024-12	2024-12	0,0		0,0
12	https://sprut.ai	3	2024-05	2024-11	0,0		0,0
13	https://t-j.ru	49	2020-04	2024-10	0,0	2 300 823,0	4 186,0
14	https://github.com	10	2019-09	2023-06	0,0	0,0	0,0
15	https://podcast.ru	1	2022-11	2022-11	0,0		0,0
16	https://medium.com	1	2020-02	2020-02	0,0		0,0
17	https://zen.yandex.ru	1	2019-12	2019-12	0,0		0,0
18	https://3dtoday.ru	13	2018-09	2018-11	0,0	432 787,0	553,0
19	Журнал Инновации и инвестиции	2	2018-04	2018-05	600,0		0,0
20	Сборник ПНИПУ	7	2012-04	2017-05	700,0		0,0
21	https://z-wave.ru	16	2014-11	2015-04	0,0		0,0

LynxReport: учёт публикаций 🖣 [Node.js] 🔽

Недавно передо мной встала задача собрать все положительные комментарии к моим статьям. Веду их учёт в таблице, и там уже вполне серьёзные цифры — больше 300 строк и свыше 10 тысяч комментариев. Основные площадки, где я публикуюсь, выглядят так:

- Хабр 4 497 комментариев
- Т-Ж 4 186
- Смартлаб 1 998
- Пикабу 726

Вручную искать в этом массиве текста слова поддержки — долго и нудно, а главное — совершенно не масштабируется. Так родилась идея: поручить всё локальной нейросети для анализа тональности. Заодно я хотел на практике разобраться с моделями на основе BERT.


Ждем на HighLoad++ 10 треков, 150+ спикеров

⊣а 16 ГБ

анализ пройдёт молниеносно. Но на деле именно GPU стал главной точкой отказа— пришлось всё считать на CPU.

Код на GitHub.

Что делает мой скрипт на GitHub

https://github.com/empenoso/comment-sentiment-analyzer/

Прежде чем бросаться в бой с CUDA, нужно было подготовить данные. Комментарии разбросаны по разным сайтам без возможности экспорта, поэтому я написал несколько парсеров, которые собирают тексты в единый JSON-формат — один файл на статью.

JSON Хабр

Парсеры я оставил приватными, так как они заточены под мои задачи, но ядро системы выложил на GitHub.

Скрипт sentiment_analyzer.py берёт JSON-файлы, подготовленные на первом этапе, и пропускает текст каждого комментария через предварительно обученную нейросетевую модель cointegrated/rubert-tiny-sentiment-balanced. Модель определяет эмоциональную окраску текста — позитивную, негативную или нейтральную.

Скрипт задуман как универсальный инструмент, поэтому основные параметры вынесены в config.env.

- MODEL_NAME: можно указать любую другую модель с Hugging Face.
- DEVICE: позволяет выбрать, на чём производить вычисления на сри или cuda (GPU).
- POSITIVE_THRESHOLD: порог уверенности модели, чтобы отнести комментарий к позитивным.
- EXCLUDE_AUTHORS: список авторов, чьи комментарии нужно игнорировать (например, мои собственные ответы).
- MIN COMMENT LENGTH: отсеивает слишком короткие и неинформативные комментарии.

Оркестрация с помощью Docker и Shell

- 1. sentiment_analysis_setup.sh: этот скрипт для первоначальной настройки. Он проверяет систему, устанавливает Docker и NVIDIA Container Toolkit, создаёт необходимые папки и конфигурационный файл. Запустив его один раз, вы подготавливаете окружение для дальнейшей работы.
- 2. run_analysis.sh: простой скрипт для запуска анализа. Он читает конфигурацию из config.env и запускает Docker-контейнер с нужными параметрами.

На практике это сводится к трём шагам: подготовка системы через setup-скрипт, сбор комментариев парсерами и запуск анализа через run_analysis.sh.

Все найденные позитивные комментарии скрипт аккуратно складывает в текстовые файлы.

Успех на CPU и урок о масштабировании

После череды падений с CUDA и финальной ошибки «No kernel image» пришлось смириться: GPU в проекте не будет. Я открыл config.env, поменял DEVICE=cuda на DEVICE=cpu и нажал save.

RuBERT-tiny справился за полторы минуты — все 10 000 комментариев были разобраны. Вся похвала и поддержка оказались в аккуратных текстовых файлах.

На финишной прямой я переписал логику сохранения. Вместо сотен мелких JSON теперь формируется один аккуратный текстовый файл для каждой площадки. Структура вывода проста:

Автор: Андрей Мищенко

Дата: 2025-06-06T11:24:20.551316+03:00 Текст: Полезные формулы, спасибо!

Ссылка: https://t-j.ru/guide/excel-kotirovki/#c2857460

Автор: Whalerman

Дата: 2025-09-09Т07:40:00.000Z

Текст: Михаил, спасибо! Хорошие и полезные посты!

Ссылка: https://smart-lab.ru/blog/1202442.php#comment18571129

Автор: DashBerlin

Дата: 2025-08-23Т00:18:43.000Z

Текст: Впервые решил заглянуть в подобный обзор, порадовала позиция количество закладок, интересено, после эти публикации читаются. Я подписан на автора, он пачками сохраняет статьи в закладки, какой процент он потом перечитывает из этого. Спасибо за обзор))

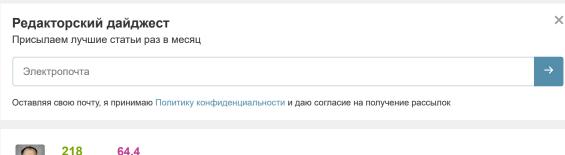
Ссылка: https://habr.com/ru/articles/933806/comments/#comment_28742672

Я ожидал, что GPU будет обрабатывать тысячи комментариев в секунду, но реальность оказалась прагматичнее — CPU выдал скорость около 110 комментариев в секунду.

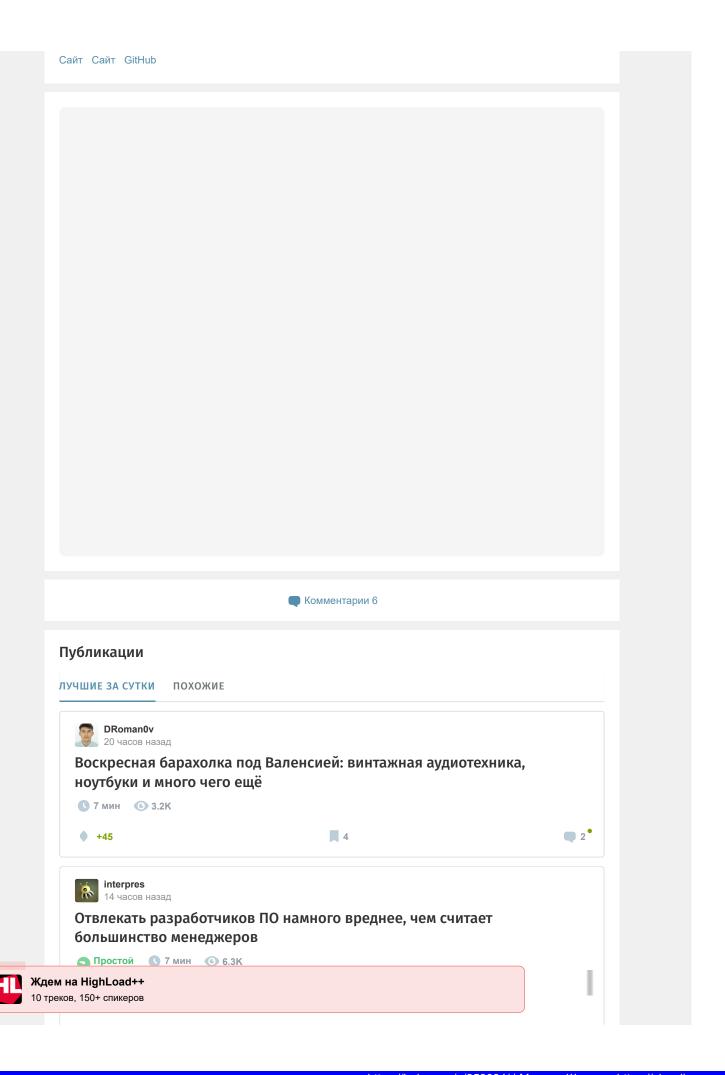
Этот опыт наглядно показал: локальный AI на процессоре — отличное решение для задач исследователя-одиночки. Но если бы у меня был миллиард строк, этот подход бы провалился. Это инструмент для прототипирования и персональных проектов, а не для Big Data.

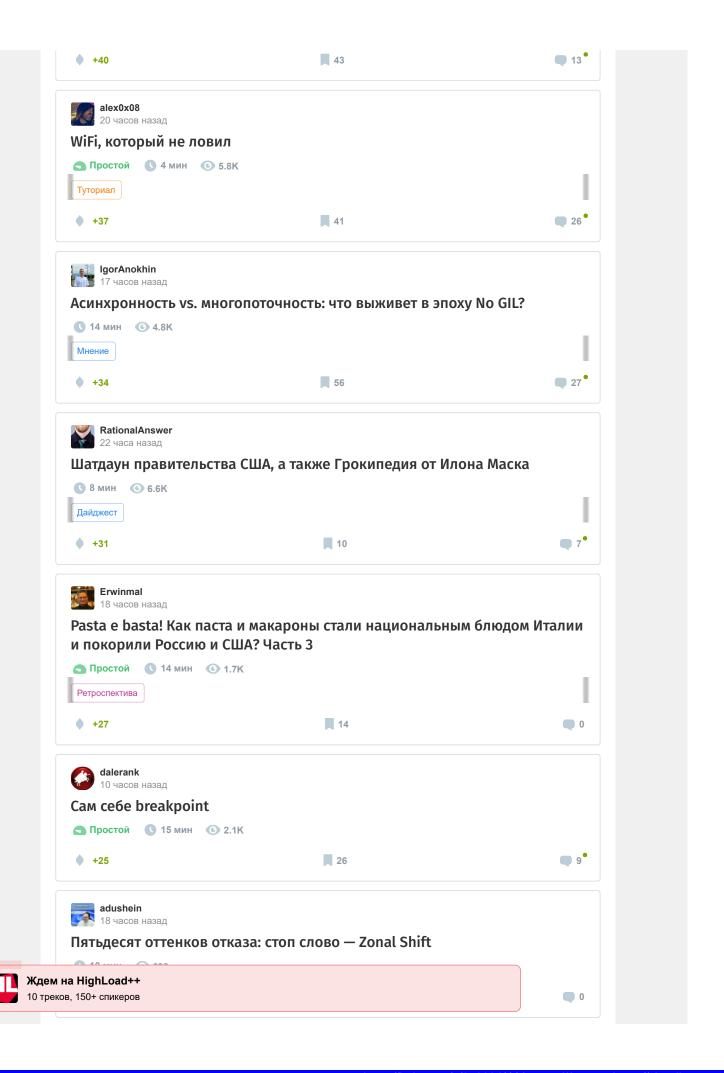
Заключение: главный урок для АІ-энтузиастов

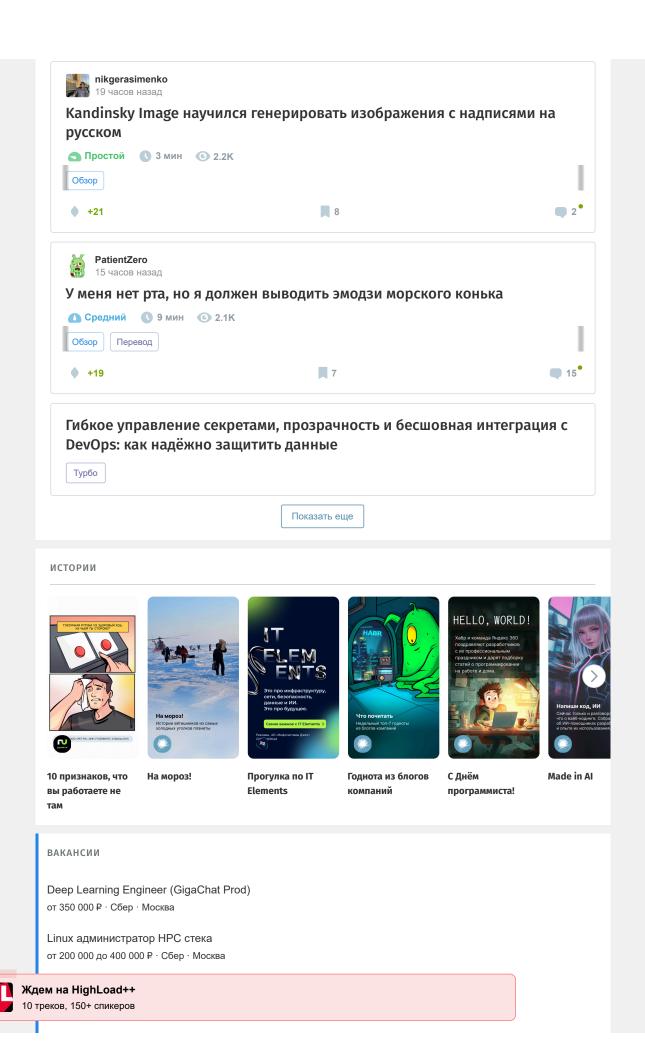
Эта история с видеокартой преподала мне два важных урока.

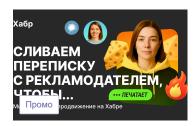

Во-первых, самое новое оборудование — не всегда самое лучшее. Моя RTX 5060 Ті с передовой архитектурой Blackwell оказалась настолько свежей, что стабильный PyTorch просто не умел с ней работать. В погоне за технологиями легко обогнать экосистему и остаться с мощным, но бесполезным инструментом (я знаю про обходной путь). Иногда проверенная карта предыдущего поколения — более разумный выбор.

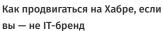
Во-вторых, Docker — это не просто среда для запуска, а настоящая страховка. Он позволил мне безболезненно переключаться между конфигурациями и быстро откатиться на CPU, когда GPU подвёл. Именно изоляция в контейнере спасла проект, позволив проиграть «битву за CUDA», но всё равно выиграть войну.


В итоге, мой проект заработал не благодаря дорогой видеокарте, а вопреки ей. Процессор решил задачу быстрее, чем я успел допить чай. Это доказывает, что локальный АІ — не удел облачных гигантов. Он вполне доступен на обычных ПК, если подходить к делу прагматично и помнить, что иногда самое простое решение — самое верное.


Теги: cuda, sm_120, blackwell, rtx 5060, bert


Хабы: Open source, Hacтройка Linux, Python, Контент и копирайтинг

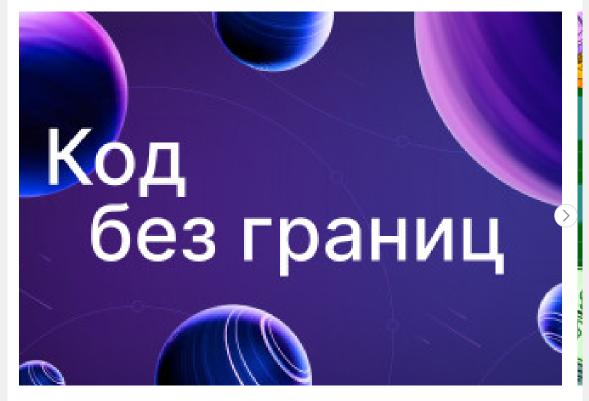



Linux администратор HPC стека от 200 000 до 350 000 ${\tt P}\cdot{\tt Cбеp}\cdot{\tt Москва}$

Python разработчик

от 280 000 до 380 000 ₽ · Selecty · Можно удаленно Больше вакансий на Хабр Карьере

минуточку внимания

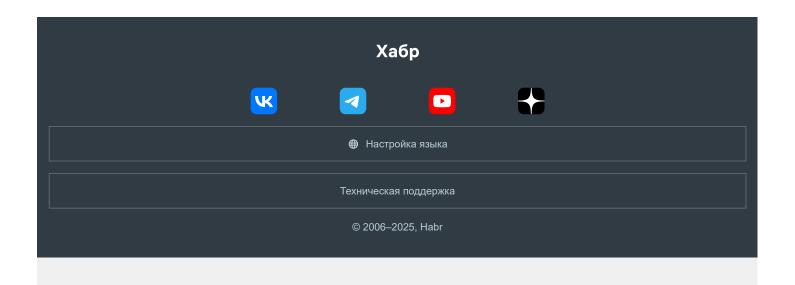


Каков твой выбор?

Отправь свой open source проект на конкурс и выиграй грант

БЛИЖАЙШИЕ СОБЫТИЯ

3 сентября – 31 октября


Программа грантов для развития open source проектов «Код без границ»

Онлайн

Разработка

Больше событий в календаре

